Gravity Separation

1. Introduction

Separation by density difference is a process that is as old as recorded history. Separation of gold by density difference dates back to at least 3000 BC as depicted in writings from ancient Egypt. The principle employed in gravity separation goes back further in time to the formation and weathering of the rocks and the releasing of the minerals they contain and the transport of the mineral grains by heavy rains. It is the driving force for the formation of the alluvial deposits of precious metals and gemstones that have been worked since beyond recorded history as they still are today. Archaeological excavations have discovered mineral concentration activities such as the lead–silver concentrating plant in Attica, Greece, dating from 300 to 400 BC. So gravity separation has a long history as a mineral concentration process.

Not all mineral combinations are amenable to this type of concentration technique. To determine the suitability of gravity separation processes to a particular ore type, a concentration criterion is commonly used. A concentration criterion (CC) can be defined as

where SG = specific gravity (or density), and the fluid is typically water or air.
Read more

Separation and Concentration Techniques

The separation and concentration of the valuable mineral can take place after the ore is crushed, ground, and classified into the required particle size distribution. There a number of different techniques are employed in concentrating the valuable minerals. These techniques exploit differences in physical or chemical properties of the valuable and gangue minerals.

Basically, there are four kinds of separation and concentration techniques:

i. Sorting – based on appearance, colour, texture, optical properties and radioactivity

ii. Gravity and Dense-Medium Separation – Separation based on specific gravity of the valuable mineral relative to the gangue and the carrying medium such as water. In dense-medium separation, the a carrying medium is a mixture of water, magnetite, or ferrosilicon. The paramagnetic properties of the medium allow it to either remain in suspension at a predetermined slurry density or to be separated from water for cleaning and reuse.

iii. Magnetic Separation – separation based upon natural or induced differences in magnetic susceptibility of the minerals within the ore.

iv. Froth Flotation – separations based on the surface chemistry properties of a mineral. The natural or modified surface property of the mineral determines its ability to attach to an air bubble and float to the surface.